Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 5842-5851, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507560

RESUMO

Metathesis reactions, including alkane, alkene, and alkyne metatheses, have their origins in the fundamental understanding of chemical reactions and the development of specialized catalysts. These reactions stand as transformative pillars in organic chemistry, providing efficient rearrangement of carbon-carbon bonds and enabling synthetic access to diverse and complex compounds. Their impact spans industries such as petrochemicals, pharmaceuticals, and materials science. In this work, we present a detailed mechanistic study of the Re(V) catalyzed alkyne metathesis through density functional theory calculations. Our findings are in agreement with the experimental evidence from Jia and co-workers and unveil critical factors governing catalyst performance. Our work not only enhances our understanding of alkyne metathesis but also contributes to the broader landscape of catalytic processes, facilitating the design of more efficient and selective transformations in organic synthesis.

2.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326158

RESUMO

In the so-called Interacting Quantum Atoms (IQA) approach, the molecular energy is numerically decomposed as a sum of atomic and diatomic contributions. While proper formulations have been put forward for both Hartree-Fock and post-Hartree-Fock wavefunctions, this is not the case for the Kohn-Sham density functional theory (KS-DFT). In this work, we critically analyze the performance of two fully additive approaches for the IQA decomposition of the KS-DFT energy, namely, the one from Francisco et al., which uses atomic scaling factors, and that from Salvador and Mayer based upon the bond order density (SM-IQA). Atomic and diatomic exchange-correlation (xc) energy components are obtained for a molecular test set comprising different bond types and multiplicities and along the reaction coordinate of a Diels-Alder reaction. Both methodologies behave similarly for all systems considered. In general, the SM-IQA diatomic xc components are less negative than the Hartree-Fock ones, which is in good agreement with the known effect of electron correlation upon (most) covalent bonds. In addition, a new general scheme to minimize the numerical error of the sum of two-electron energy contributions (i.e., Coulomb and exact exchange) in the framework of overlapping atoms is described in detail.


Assuntos
Elétrons , Teoria da Densidade Funcional , Fenômenos Físicos
3.
J Chem Theory Comput ; 19(12): 3469-3485, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37246911

RESUMO

Energy decomposition analysis (EDA) is a well-established approach to dissect the interaction energy into chemically sound components. Despite the inherent requirement of reference states has been a long-standing object of debate, the direct relation with the molecular orbital analysis helps in building up predictive models. The alternative molecular energy decomposition schemes that decompose the total energy into atomic and diatomic contributions, such as the interacting quantum atoms (IQA), has no external reference requirements and also the intra- and intermolecular interactions are treated on equal footing. However, a connection with heuristic chemical models are limited, bringing about a somewhat narrower predictive power. While efforts to reconcile the bonding picture obtained by both methodologies have been discussed in the past, a synergic combination of them has not been tackled yet. Herein, we present the use of IQA decomposition of the individual terms arising from the EDA in the context of intermolecular interactions, henceforth EDA-IQA. The method is applied to a molecular set covering a wide range of interaction types, including hydrogen bonding, charge-dipole, π-π and halogen interactions. We find that the electrostatic energy from EDA, entirely seen as intermolecular, leads to meaningful and non-negligible intra-fragment contributions upon IQA decomposition, originated from charge penetration. EDA-IQA also affords the decomposition of the Pauli repulsion term into intra- and inter-fragment contributions. The intra-fragment term is destabilizing, particularly for the moieties that are net acceptors of charge, while the inter-fragment Pauli term is actually stabilizing. In the case of the orbital interaction term, the sign and magnitude of the intra-fragment contribution at equilibrium geometries is largely driven by the amount of charge transfer, while the inter-fragment contribution is clearly stabilizing. EDA-IQA terms show a smooth behavior along the intermolecular dissociation path of selected systems. The new EDA-IQA methodology provides a richer energy decomposition scheme that aims at bridging the gap between the two main distinct real-space and Hilbert-space methodologies. Via this approach, the partitioning can be used directionally on all the EDA terms aiding in identifying the causal effects on geometries and/or reactivity.

4.
J Phys Chem A ; 127(7): 1760-1774, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36753558

RESUMO

Computational quantum chemistry can be more than just numerical experiments when methods are specifically adapted to investigate chemical concepts. One important example is the development of energy decomposition analysis (EDA) to reveal the physical driving forces behind intermolecular interactions. In EDA, typically the interaction energy from a good-quality density functional theory (DFT) calculation is decomposed into multiple additive components that unveil permanent and induced electrostatics, Pauli repulsion, dispersion, and charge-transfer contributions to noncovalent interactions. Herein, we formulate, implement, and investigate decomposing the forces associated with intermolecular interactions into the same components. The resulting force decomposition analysis (FDA) is potentially useful as a complement to the EDA to understand chemistry, while also providing far more information than an EDA for data analysis purposes such as training physics-based force fields. We apply the FDA based on absolutely localized molecular orbitals (ALMOs) to analyze interactions of water with sodium and chloride ions as well as in the water dimer. We also analyze the forces responsible for geometric changes in carbon dioxide upon adsorption onto (and activation by) gold and silver anions. We also investigate how the force components of an EDA-based force field for water clusters, namely MB-UCB, compare to those from force decomposition analysis.

5.
Chem Sci ; 14(2): 384-392, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687341

RESUMO

A recent article by Pan and Frenking challenges our assignment of the oxidation state of low valent group 2 compounds. With this reply, we show that our assignment of Be(+2) and Mg(+2) oxidation states in Be(cAACDip)2 and Mg(cAACDip)2 is fully consistent with our data. Some of the arguments exposed by Pan and Frenking were based on visual inspection of our figures, rather than a thorough numerical analysis. We discuss with numerical proof that some of the statements made by the authors concerning our reported data are erroneous. In addition, we provide further evidence that the criterion of the lowest orbital interaction energy in the energy decomposition analysis (EDA) method is unsuitable as a general tool to assess the valence state of the fragments. Other indicators based on natural orbitals for chemical valence (NOCV) deliver a more reliable bonding picture. We also emphasize the importance of using stable wavefunctions for any kind of analysis, including EDA.

6.
Chem Sci ; 13(22): 6583-6591, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756523

RESUMO

Low-valent group 2 (E = Be and Mg) stabilized compounds have been long synthetically pursued. Here we discuss the electronic structure of a series of Lewis base-stabilized Be and Mg compounds. Despite the accepted zero(0) oxidation state nature of the group 2 elements of some recent experimentally accomplished species, the analysis of multireference wavefunctions provides compelling evidence for a strong diradical character with an oxidation state of +2. Thus, we elaborate on the distinction between a description as a donor-acceptor interaction L(0) ⇆ E(0) ⇄ L(0) and the internally oxidized situation, better interpreted as a diradical L(-1) → E(+2) ← L(-1) species. The experimentally accomplished examples rely on the strengthened bonds by increasing the π-acidity of the ligand; avoiding this interaction could lead to an unprecedented low-oxidation state.

7.
J Am Chem Soc ; 144(20): 8897-8901, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575699

RESUMO

Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.


Assuntos
Iminas , Paládio , Catálise , Iminas/química , Ligantes
8.
J Chem Theory Comput ; 18(1): 309-322, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34929084

RESUMO

Oxidation states represent the ionic distribution of charge in a molecule and are significant in tracking redox reactions and understanding chemical bonding. While effective algorithms already exist based on formal Lewis structures as well as using localized orbitals, they exhibit differences in challenging cases where effects such as redox noninnocence are at play. Given a density functional theory (DFT) calculation with chosen total charge and spin multiplicity, this work reports a new approach to obtaining fragment-localized orbitals that is termed oxidation state localized orbitals (OSLO), together with an algorithm for assigning the oxidation state using the OSLOs and an associated fragment orbital localization index (FOLI). Evaluating the FOLI requires fragment populations, and for this purpose a new version of the intrinsic atomic orbital (IAO) scheme is introduced in which the IAOs are evaluated using a reference minimal basis formed from on-the-fly superposition of atomic density (IAO-AutoSAD) calculations in the target basis set and at the target level of theory. The OSLO algorithm is applied to a range of challenging cases including high valent metal oxide complexes, redox noninnocent NO and dithiolate transition metal complexes, a range of carbene-containing TM complexes, and other examples including the potentially inverted ligand field in [Cu(CF3)4]-. Across this range of cases, OSLO produces generally satisfactory results. Furthermore, in borderline cases, the OSLOs and associated FOLI values provide direct evidence of the emergence of covalent interactions between fragments that nicely complements existing approaches.

9.
Inorg Chem ; 60(23): 17657-17668, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34766771

RESUMO

Low-valent group 15 compounds stabilized by pincer ligands have gained particular interest, given their direct access to fine-tune their reactivity by the coordination pattern. Recently, bismuth has been employed in a variety of catalytic transformations by taking advantage of the (+1/+3) redox couple. In this work, we present a detailed quantum-chemical study on the electronic structure of bismuth pincer complexes from two different families, namely, bis(ketimine)phenyl (NCN) and triamide bismuthinidene (NNN). The use of the so-called effective oxidation state analysis allows the unambiguous assignation of the bismuth oxidation state. In contrast to previous studies, our calculations suggest a Bi(+1) assignation for NCN pincer ligands, while Bi(+3) character is found for NNN pincer complexes. Notably, regardless of its oxidation state, the central bismuth atom disposes of up to two lone pairs for coordinating Lewis acids, as indicated by very high first and second proton affinity values. Besides, the Bi-NNN systems can also accommodate two Lewis base ligands, indicating also ambiphilic behavior. The effective fragment orbital analysis of Bi and the ligand allows monitoring of the intricate electron flow of these processes, revealing the noninnocent nature of the NNN ligand, in contrast with the NCN one. By the dissection of the electron density into effective fragment orbitals, we are able to quantify and rationalize the Lewis base/acid character.

10.
Inorg Chem ; 59(20): 15410-15420, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33030893

RESUMO

The oxidation state (OS) of metals and ligands in inorganic complexes may be defined by carefully curated rules, such as from IUPAC, or by computational procedures such as the effective oxidation state (EOS) or localized orbital bonding analysis (LOBA). Such definitions typically agree for systems with simple ionic bonding and innocent ligands but may disagree as the boundary between ionic and covalent bonds is approached, or as the role of ligand noninnocence becomes nontrivial, or high oxidation states of metals are supported by heavy dative bonding, and so on. This work systematically compares IUPAC, EOS, and LOBA across a series of complexes where OS assignment is challenging. These systems include high-valent transition metal oxides, transition metal complexes with noninnocent ligands such as dithiolate and nitrosyl, metal sulfur dioxide adducts, and two transition metal carbene complexes. The differences in OS assignment by the three methods are carefully discussed, demonstrating the synergy between EOS and LOBA. In addition, a clarity index for LOBA OS assignments is introduced that provides an indication of whether or not its predictions are close to the ionic-covalent boundary.

11.
J Org Chem ; 85(19): 12262-12269, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786640

RESUMO

The mechanism for the synthesis of 2,3-bismethylenechromanes obtained by the reaction between silylethynyloxyarenes and allylic pivalates and catalyzed by a palladium complex has been investigated using computational methods rooted in density functional theory. The reaction is promoted by a C-H bond activation and the consequent bond cleavage of both substrates, followed by a novel annulation. The whole mechanism of this reaction is described together with the drawbacks that could block it. The main role played by the allyl rotation, inducing selectivity, together with the lability of the phosphine ligand and base (Cs2CO3) effects are unraveled. Finally, the nature of the substrates was managed, confirming that ortho-allylated silylethynyloxybenzenes lead to the same type of annulated products.

12.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935971

RESUMO

The use of centroids of localized orbitals as a method to derive oxidation states (OS) from first-principles is critically analyzed. We explore the performance of the closest-atom distance criterion to assign electrons for a number of challenging systems, including high-valent transition metal compounds, π-adducts, and transition metal (TM) carbenes. Here, we also introduce a mixed approach that combines the position of the centroids with Bader's atomic basins as an alternative criterion for electron assignment. The closest-atom criterion performs reasonably well for the challenging systems, but wrongly considers O-H and N-H bonds as hydrides. The new criterion fixes this problem, but underperforms in the case of TM carbenes. Moreover, the OS assignment in dubious cases exhibit undesirable dependence on the particular choice for orbital localization.


Assuntos
Modelos Teóricos , Oxirredução , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Prótons , Teoria Quântica
13.
Inorg Chem ; 57(12): 6981-6990, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29799198

RESUMO

In this work, the aim is to characterize how an Fe-based metal-organic framework (MOF) behaves when gases, like carbon dioxide, are inserted through their channels and to characterize the nature and strength of those interactions. Despite the computational nature of the project, it is based on the experimental results obtained in 2016 by Mínguez-Espallargas and co-workers ( J. Am. Chem. Soc. 2013, 135, 15986 - 15989 ). Those MOFs were found to selectively allocate/adsorb CO2, having as a drawback that apparently each cavity allocates only one CO2 molecule. Despite truncating the MOF to its unitary cell, the whole cavity of the MOF can be described in detail by precise ab initio calculations. Another computational goal is to unravel why experimentally CO2 was preferred with respect to N2, and for the sake of consistency, a list of common gases will be further studied, such as H2, O2, H2O, CH4, C2H6, N2O, or NO.

14.
Inorg Chem ; 55(5): 2185-99, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26866981

RESUMO

The most relevant manifestations of ligand noninnocence of quinone and bipyridine derivatives are thoroughly scrutinized and discussed through an extensive and systematic set of octahedral ruthenium complexes, [(en)2RuL](z), in four oxidation states (z = +3, +2, +1, and 0). The characteristic structural deformation of ligands upon coordination/noninnocence is put into context with the underlying electronic structure of the complexes and its change upon reduction. In addition, by means of decomposing the corresponding reductions into electron transfer and structural relaxation subprocesses, the energetic contribution of these structural deformations to the redox energetics is revealed. The change of molecular electron density upon metal- and ligand-centered reductions is also visualized and shown to provide novel insights into the corresponding redox processes. Moreover, the charge distribution of the π-subspace is straightforwardly examined and used as indicator of ligand noninnocence in the distinct oxidation states of the complexes. The aromatization/dearomatization processes of ligand backbones are also monitored using magnetic (NICS) and electronic (PDI) indicators of aromaticity, and the consequences to noninnocent behavior are discussed. Finally, the recently developed effective oxidation state (EOS) analysis is utilized, on the one hand, to test its applicability for complexes containing noninnocent ligands, and, on the other hand, to provide new insights into the magnitude of state mixings in the investigated complexes. The effect of ligand substitution, nature of donor atom, ligand frame modification on these manifestations, and measures is discussed in an intuitive and pedagogical manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...